2,462 research outputs found

    An investigation of voids formation mechanisms and their effects on freeze and thaw processes of lithium and lithium fluoride

    Get PDF
    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system

    A Comparison of Thin-Client Computing Architectures

    Get PDF
    Thin-client computing offers the promise of easier-to-maintain computational services with reduced total cost of ownership. The recent and growing popularity of thin-client systems makes it important to develop techniques for analyzing and comparing their performance, to assess the general feasibility of the thin-client computing model, and to determine the factors that govern the performance of these architectures. To assess the viability of the thin-client computing model, we measured the performance of five popular thin-client platforms running over a wide range of network access bandwidths. Our results show that current thin-client solutions generally work well in a LAN environment, but their performance degrades significantly when they are used in today's broadband environments. We also find that the efficiency of the thin-client protocols varies widely. In some cases, the efficiency of the thin client protocol for web applications is within a factor of two of standard web protocols, while others are 30 times more inefficient. We analyze the differences in the various approaches and explain the impact of the underlying remote display protocols on overall performance

    ESL Based Cylindrical Shell Elements with Hierarchical Shape Functions for Laminated Composite Shells

    Get PDF
    We introduce higher-order cylindrical shell element based on ESL (equivalent single-layer) theory for the analysis of laminated composite shells. The proposed elements are formulated by the dimensional reduction technique from three-dimensional solid to two-dimensional cylindrical surface with plane stress assumption. It allows the first-order shear deformation and considers anisotropic materials due to fiber orientation. The element displacement approximation is established by the integrals of Legendre polynomials with hierarchical concept to ensure the C0-continuity at the interface between adjacent elements as well as C1-continuity at the interface between adjacent layers. For geometry mapping, cylindrical coordinate is adopted to implement the exact mapping of curved shell configuration with a constant curvature with respect to any direction in the plane. The verification and characteristics of the proposed element are investigated through the analyses of three cylindrical shell problems with different shapes, loadings, and boundary conditions

    Kinetic stabilization of Fe film on (4 by 2)-GaAs(100)

    Full text link
    We grow Fe film on (4 by 2)-GaAs(100) at low temperature, (~ 130 K) and study their chemical structure by photoelectron spectroscopy using synchrotron radiation. We observe the effective suppression of As segregation and remarkable reduction of alloy formation near the interface between Fe and substrate. Hence, this should be a way to grow virtually pristine Fe film on GaAs(100). Further, the Fe film is found stable against As segregation even after warmed up to room temperature. There only forms very thin, ~ 8 angstrom thick interface alloy. It is speculated that the interface alloy forms via surface diffusion mediated by interface defects formed during the low temperature growth of the Fe film. Further out-diffusion of both Ga and As are suppressed because it should then proceed via inefficient bulk diffusion.Comment: 4 figure

    Evaluation of a Spyware Detection System Using Thin Client Computing

    Get PDF
    In previous work, we introduced a bait injection system designed to delude and detect crimeware by forcing it to reveal itself during the exploitation of monitored information. Although effective as a technique, our original system was practically limited, as it was implemented in a personal VM environment. In this paper, we extend our system by applying it to thin-clien to demonstrate how the approach can be used in a large-scale deployment. Adapting our system to such an environment revealed a number of challenging issues, such as scalability, portability, and choice of physical communication means. We provide implementation details, as well as experimental results that demonstrate the scalability and effectiveness of our system

    Polychlorinated biphenyls, Polybrominated biphenyls, Polychlorinated dibenzo-p-dioxins and Polychlorinated dibenzofurans

    Get PDF
    Environmental contamination levels, human exposure, toxicokinetics, and health effects of PCBs, PBBs, PCDDs/PCDFs are discussed

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the \star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    Ambipolar bistable switching effect of graphene

    Full text link
    Reproducible current hysteresis is observed in graphene with a back gate structure in a two-terminal configuration. By applying a back gate bias to tune the Fermi level, an opposite sequence of switching with the different charge carriers, holes and electrons, is found. The charging and discharging effect is proposed to explain this ambipolar bistable hysteretic switching. To confirm this hypothesis, one-level transport model simulations including charging effect are performed and the results are consistent with our experimental data. Methods of improving the ON/OFF ratio of graphene resistive switching are suggested

    Tunneling characteristics of graphene

    Full text link
    Negative differential conductance and tunneling characteristics of two-terminal graphene devices are observed before and after electric breakdown, respectively. The former is caused by the strong scattering under a high E-field, and the latter is due to the appearance of a tunneling barrier in graphene channel induced by a structural transformation from crystalline graphene to disordered graphene because of the breakdown. Using Raman spectroscopy and imaging, the presence of non-uniform disordered graphene is confirmed. A memory switching effect of 100000% ON/OFF ratio is demonstrated in the tunneling regime which can be employed in various applications
    corecore